Multivariate Time Series Similarity Searching

نویسندگان

  • Jimin Wang
  • Yuelong Zhu
  • Shijin Li
  • Dingsheng Wan
  • Pengcheng Zhang
چکیده

Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weighted BORDA voting method. The dimension-combination method could use the existing similarity searching method. Several experiments, which used the classification accuracy as a measure, were performed on six datasets from the UCI KDD Archive to validate the method. The results show the advantage of the approach compared to the traditional similarity measures, such as Euclidean distance (ED), cynamic time warping (DTW), point distribution (PD), PCA similarity factor (SPCA), and extended Frobenius norm (Eros), for MTS datasets in some ways. Our experiments also demonstrate that no measure can fit all datasets, and the proposed measure is a choice for similarity searches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Multi-measure Similarity Searching for Time Series

In this paper, we evaluate some techniques for the time series similarity searching. Many distance measures have been proposed as alternatives to the Euclidean distance in the similarity searching. To verify the assumption that the combination of various similarity measures may produce more accurate similarity searching results, we propose an multi-measure algorithm to combine several measures ...

متن کامل

Anticipatory DTW for Efficient Similarity Search in Time Series Databases

Time series arise in many different applications in the form of sensor data, stocks data, videos, and other time-related information. Analysis of this data typically requires searching for similar time series in a database. Dynamic Time Warping (DTW) is a widely used high-quality distance measure for time series. As DTW is computationally expensive, efficient algorithms for fast computation are...

متن کامل

Data Mining in Meteorological Time Series using Association Rules and a Similarity Searching-Based Method

In this work we present a method for data mining in multidimensional time series based in similarity queries. The proposed method integrates a descriptor based on Coulomb’s law for the reduction of time series’ dimensionality, a system to perform similarity searching in time series and also a module to generate association rules. Validation was performed by means of experiments with real data, ...

متن کامل

Clustering of Multivariate Time-Series Data

A new methodology for clustering multivariate time-series data is proposed. The methodology is based on calculation of the degree of similarity between multivariate time-series datasets using two similarity factors. One similarity factor is based on principal component analysis and the angles between the principal component subspaces while the other is based on the Mahalanobis distance between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014